Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Environ Res Public Health ; 19(17)2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2010032

ABSTRACT

The conversion rate between asymptomatic infections and reported/unreported symptomatic infections is a very sensitive parameter for model variables that spread COVID-19. This is important information for follow-up use in screening, prediction, prognostics, contact tracing, and drug development for the COVID-19 pandemic. The model described here suggests that there may not be enough researchers to solve all of these problems thoroughly and effectively, and it requires careful selection of what we are doing and rapid sharing of results and models and optimizing modeling simulations with value to reduce the impact of COVID-19. Exploring simulation modeling will help decision makers make the most informed decisions. In order to fight against the "Delta" virus, the establishment of a line of defense through all-people testing (APT) is not only an effective method summarized from past experience but also one of the best means to effectively cut the chain of epidemic transmission. The effect of large-scale testing has been fully verified in the international community. We developed a practical dynamic infectious disease model-SETPG (A + I) RD + APT by considering the effects of the all-people test (APT). The model is useful for studying effects of screening measures and providing a more realistic modelling with all-people-test strategies, which require everybody in a population to be tested for infection. In prior work, a total of 370 epidemic cases were collected. We collected three kinds of known cases: the cumulative number of daily incidences, daily cumulative recovery, and daily cumulative deaths in Hong Kong and the United States between 22 January 2020 and 13 November 2020 were simulated. In two essential strategies of the integrated SETPG (A + I) RD + APT model, comparing the cumulative number of screenings in derivative experiments based on daily detection capability and tracking system application rate, we evaluated the performance of the timespan required for the basic regeneration number (R0) and real-time regeneration number (R0t) to reach 1; the optimal policy of each experiment is available, and the screening effect is evaluated by screening performance indicators. with the binary encoding screening method, the number of screenings for the target population is 8667 in HK and 1,803,400 in the U.S., including 6067 asymptomatic cases in HK and 1,262,380 in the U.S. as well as 2599 cases of mild symptoms in HK and 541,020 in the U.S.; there were also 8.25 days of screening timespan in HK and 9.25 days of screening timespan required in the U.S. and a daily detectability of 625,000 cases in HK and 6,050,000 cases in the U.S. Using precise tracking technology, number of screenings for the target population is 6060 cases in HK and 1,766,420 cases in the U.S., including 4242 asymptomatic cases in HK and 1,236,494 cases in the U.S. as well as 1818 cases of mild symptoms in HK and 529,926 cases in the U.S. Total screening timespan (TS) is 8.25~9.25 days. According to the proposed infectious dynamics model that adapts to the all-people test, all of the epidemic cases were reported for fitting, and the result seemed more reasonable, and epidemic prediction became more accurate. It adapted to densely populated metropolises for APT on prevention.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Communicable Diseases/epidemiology , Humans , Pandemics/prevention & control , SARS-CoV-2 , United States
3.
Int J Environ Res Public Health ; 17(15)2020 07 24.
Article in English | MEDLINE | ID: covidwho-669606

ABSTRACT

The emergence of the 2019 novel coronavirus (COVID-19) which was declared a pandemic has spread to 210 countries worldwide. It has had a significant impact on health systems and economic, educational and social facets of contemporary society. As the rate of transmission increases, various collaborative approaches among stakeholders to develop innovative means of screening, detecting and diagnosing COVID-19's cases among human beings at a commensurate rate have evolved. Further, the utility of computing models associated with the fourth industrial revolution technologies in achieving the desired feat has been highlighted. However, there is a gap in terms of the accuracy of detection and prediction of COVID-19 cases and tracing contacts of infected persons. This paper presents a review of computing models that can be adopted to enhance the performance of detecting and predicting the COVID-19 pandemic cases. We focus on big data, artificial intelligence (AI) and nature-inspired computing (NIC) models that can be adopted in the current pandemic. The review suggested that artificial intelligence models have been used for the case detection of COVID-19. Similarly, big data platforms have also been applied for tracing contacts. However, the nature-inspired computing (NIC) models that have demonstrated good performance in feature selection of medical issues are yet to be explored for case detection and tracing of contacts in the current COVID-19 pandemic. This study holds salient implications for practitioners and researchers alike as it elucidates the potentials of NIC in the accurate detection of pandemic cases and optimized contact tracing.


Subject(s)
Artificial Intelligence , Big Data , Computer Simulation , Contact Tracing , Betacoronavirus , COVID-19 , Coronavirus Infections , Humans , Pandemics/prevention & control , Pneumonia, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL